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i. Introduction

In recent years increasingly complex wing planforms, which are

efficient over a large flight envelope, are being used in the aircraft

industry. An efficient high-subsonic or supersonic cruise aircraft

must be designed to work efficiently even for off-design performance

points, such as, landing and take-off. One way of designing such an

aircraft is to have fully attached flow at cruise and controlled

leading-edge separation at landing- and take-off-conditions (ref. i).

A significant amount of vortex lift can be generated at high angles

of attack by leading-edge vortex flow. Henderson (ref. I) pointed

out that at high angles of attack highly swept-back wings having sharp

leading-edges have low amount of leading-edge suction (essentially

zero) and generate large amount of vortex lift. However, the

leading-edge suction increases as the sweep is decreased or leading-

edge radii are increased. The structural considerations restrict the

leading-edges to be of finite radii. In these cases the lift data

lies between potential and potential plus vortex estimates (zero

suction). At present, there exists no theoretical method which can

predict aerodynamic characteristics of wings having partial leading-

edge suction and vortex flow as mentioned above. A theoretical method

is presented here to predict aerodynamic characteristics of wings

under such conditions.
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A theoretical method for cases _'ith non-zero leading-edge suction

and partial leading-edge separation should also be applicable to cases

with complete leading-edge separation. Due to lack of data with partial

leading-edge separation, the present method has been extensively

compared with other theoretical methods and available data only for

cases with complete leading-edge separation. Thus, a survey of

literature on completely separated leading-edge vortex flow seems

pertinent.

Legendre (ref. 2) wa_ the first one who attempted to solve the

leading-edge separation _roblan. He asstuned that rolled up vortex

sheets over the ring can be replaced by a pair of concentrated vortices

(fig. 1). In this model the flow tangency boundary condition over the

wing was satisfied alon[ with the leading-edge Kutta condition. The

flow was assumed to be conical so that conformal mapping could be used.

Upon the instigation by Adams (ref. 3), Legendre (ref. 4) revised his

model. He reported that in his first model he had assumed a cut

joining the two vortices. In another form of his model, Legendre

included a cut between the vortices and their respective leading-edges

tc account for the feeding sheets. Adams pointed out that in the

Cir_t mod_l cf L_ _ the..........r_ lift was _ultivalued because the re_ion

was no longer _zmply ccnnected and in the second one the pressure

difference was allowed across the sheet. Based on the suggestions of

Edwards (ref. 5), Bro%nn and Michael (ref. 6) modi1ied Legendre's

slender hcdy model hy using feeding cuts, which connected the line

vCrticeS t6 the wing leading-edges (fig. 2). This vortex system of



concentrated line vortex and feeding cuts was required to satisfy

the force free condition. The leading-edge Kutta condition and

flow tangency bcundary condition on the wing were also satisfied.

Mangler and Smith (ref. 7) proposed a somewhatmore realistic _odel

than that of Brown and Michael, but still used slender body theory

in their investigation. They used a continuous model of the separated

vcrtex sheet along with a concentrated core (fig. 3). _ue shape and

strength of the vortex sheet and the concentrated line vortex were

determined by satisfying the flow tangency condition on the wing and

the pressure continuity condition across the separated vortex sheet.

Later, Smith (ref. 8) used segmented feeding vortex sheet with

considerable improvement in numerical procedure (fig. h), largely due

_c advent of greater computing power. The above model _as modified

fUrther for thick wings (Smith, ref. 9). The main shortcoming of all

these models described so far is the assumption of conical flow.

Gersten (ref. IC) extended Bolleo_'s vortex model (ref. ii), which

was for rectangular wings with wing tip separation, to arbitrarily

shapedwings cf small aspect ratio with leading-edge se;araticn

(fig. 5). In this model the vortices cameoff wing edges at an angle

a/2 _o the _tng plane. The wing was replaced by infinitesimal lifting

elements and the strength of vortices was assumedto vary along the

span. At t_is point the flow tangency condition on the wing _s

satisfied te find the wing characteristics. Garner and Lehrian (ref.

12) followed Gersten's approach by using Multhopp's lifting

surface theory (ref. 13) to represent the wing. Both of these models
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are very crude and give only total characteristics of the wing; i.e.,

pressure distributions are not calculated.

Sacks, et al (ref. lh) assumed aerodynamic characteristics (l_ft

and pitching moment) to be composed of two components - the linear

and non-linear components. The linear component w_s calculated by

using the integral method of La_rence (ref. 15), while the non-linear

component was calculated by assuming that vortex pairs were shed Just

outside the wing leading-edge with shedding rate determined by either

an empirical method or slender wing theory. The location of each

vortex pair was determined hy satisfying the force free condition at

the vortices.

Nangia and Hancock (ref. 16) extended Brown and Michael's model

(ref. 6) to non-slender wings. In their model the wing planform was

represented by bound- and trailing-vorticity distributions. The

wake behind the trailir, g-edge _as free to move outboard and the

leading-edge separation was represented by two isolated vortices,

_-hich vere connected to the leading-edge by cuts (as in Brcvn and

Michael). The Kutta condition was satisfied along the leading- and

trailing-edges and the flow tangency condition was satisfied on the

wing surface. Zero force condition was satisfied on the isolated

vortices and the cuts at selected collocation points. 9ithough tk_is"

method was not restricted to slender wings, the leading-edge flow

model was crude.



Polhamus (ref. 17 and 18) used leading-edge suction analogy to

predict lift coefficients for various simple planforms, such as,

arrow-, diamond- and delta-wings. It was assumed that when the

complete flow reattachment occurs inboard of the leading-edge vortices,

the tots/ lift equals the sum of the potential and vortex lift.

These components of l_ft were calculated by using a modified form of

Multhopp's lifting surface theory (ref. 19). The vortex lift was

assumed to be equal in magnitude to the potential flow leadim4_-edge

suction force lost due tc separation. In its original form this method

did not calculate the local distribution of lift and so the pitching

moments were not predicted. Snyder and Lamar (ref. 20) used this

method to predict the longitudinal load distribution and pitching

moment for delta wings.

Mook and Maddox (ref. 21) modeled the leading-edge vortex system

by finite vortex elements coming off the leading-edge (fig. 6). This

network of vortex elements was superimpcsed on the vortex-lattice

used by Giesing, et al (ref. 22). The solution is obtained in an

iterative marmer by satisfying the flow tangency boundary condition on

the wing surface, approximately satisfying leading- and trailing-edge

Kutta conditions, and satisfying force free conditions on the vortex

.elements over the wing surface. The force free condition was not

i

satisfied on the wake behind the trailing-edge. Kandil, et al (ref. 23)

modeled the flow in a manner similar to that of Mook and Maddox

(ref. 21) and extended it to wing-tip separation also. Kandi], et al

followed Beiotserkovskll (ref. 2h) for the representation of the

ORIGINAL PAGE IS
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wir_ surface, in this model the bound elements of the vortex-lattice

_'ere unswept, and the wake behind the trailing-edge and the vortex

elements coming from wlng-tip were force free. Apparently, this

method has been restricted tc an angle of attack of 20 degrees (ref.

25). Kandil, et 8/ (ref. 26) extended their model to calculate the

location and strength of a concentrated ccre, which they also used

for convergence criteria. Rehbach (ref. 27) _Iso followed

Belotserkovskii to model wing-tip separation and the approach was

similar to that of Kandil, eZ _I (ref. 23). However, he solved the

leading-edge separation problem differently (ref. 28). The process

was started by finding a converged solution for a rectangular wing

(fig. 7). The leading-edge span of [he rectangular wing was decreased by

a sm_al! amount, u_hile the trailing-edge span _'as kept constant. A new

converged solutiGn for this wing %-as obtained. This process was

repeated until the planform reduced to a delta %-ing. The deficiency

of these methods is that +.he leading-edge Kut_a condition is only

approximately satisfied. The iteration process of Rehbach could also

be quite time consuming.

Natb_nen (ref. 29) presented two models of leading-edge separation;

t _ f/xe_! %_k_ _ m_de _ and the free wake _oflel '_:- o__--_. _j. In bo_h models

the wing was reoresented by panels with constant strength doublet distri-

bution, beth% equivalent to closed _vortex filam_ents on the boundary of

the panels. In the fixed wake model the separated sheet was modeled l_v

placing_ a ser_, ?f planar boxes along the leading-edge which extended

iJ . _
I .
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to the vortex core predicted analytically by Brovr and _4ichael (ref. _).

The doublet strengths were obtained by satisfying flow tangency

boundary conditions only. In the free wake model the _eparated

vortex sheet was represented by discrete vortices attached to the

ieadin@-edge. These vcrtice_ were aligned along the local velocity

vector to be force free. The wake behind the trailing-edge was force

free only to a certain extent. The fixed wake model is too crude,

whereas no definite convergence criteria h&s been established for

the free wake model.

The most sophisticated and realistic model of all leading-edge

separation models has been due to Bruno, et al (ref. 30). In this

model the wing and the separated vortex sheet were represented by

_iecewise continuous doublet distributions. The separated vortex

sheet %_as connected to a concentrated core by a continuous fed sheet

(fig. _). _he solution was obtained in 82. iterative mar.nor b_.

sat_sf_'ing the Kutta condition __long all edges, flow tangency boundary

condition on the wing, and the force free condition on the separated

vortex sheet and wake behind the trailing-edge. This model has also

teen extended tc thick end c_bored wings. The drawbacks of this

model are that it cannot predict lift correctly at small o/_gles of

attack for moderate to low aspect ratio wings, takes too much

computer time %0 get a converged solution and meeds large computer

memory spacc.
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All methods menticned above calculate only the wing characteris-

tics for complete loss of leading-edge suction. A method is

developed here for partial leading-edge flow separation wlth non-zero

lea_ing-edge suction. The wing boundary condition is formulated by

the Quasi Vortex Lattice raethod (QYLM) of Lan (ref. 31). The advantage

of this method is that the leading-edge boundary condition can be

exactly satisfied. The leading-edge separated vortices are

represented by discrete free vortex elements which are aligned with the

local velocity vector at their mid-points to satisfy the force free

condition. The wake behind the trailing-edge is _lso force free. The

flow tangency boundary condition is satisfied on the wing, including

the leading- and trailing-edges. Due to the non-linear nature of the

prcblem, the problem is solved in an iterative na_n:_er. Due to non-

availability of any data with partial leading-edge separation, the

method will be compared only with other methods (ref. 3_ and 33) and

experinental data (ref. 3& thru &0) for complete leading-edge

separation. The basic assumption in the present theory is that the

Prandtl-Glauert equation is applicable. The thickness and fuselage

effects are ignored.

_a_ter 2 present_ the theoretical method. In ChaFfer 7,

numerical results are presented and discussed. Conclusions and

recommendations are made in Chapter h.



2. Theoretical Method

2.1 Problem Definit%on

In ste_y symmetric flight at a high angle of attack, the fiov _

over a thin low aspect ratio highly sweptback wing separates along

the leading-edge and the tips. In the following, only delta _'ings

will be considered. The wing can be represented by a bound vortex

sheet, across which exists a pressure difference, ar,d the separated

flow along leading-edges by force free vortex sheets, across which

there is no pressure difference. In the present me%hod, the Quasi-

Vortex-Lattice method (ref. 31) is used to simplify the induced

velocity expressions due to the bound vortex sheet and discrete force

free vortex elements for separated vortex sheets.

The follo_ng boundary conditions are imposed on the flo%" model:

a. The flow must be tangential to the wing camber surface.

b. The leading-edge boundary condition and trailing-edge Kutta

condition are to be satisfied.

c. The vortex elements over the wing and wake behind the

trailing-edge are force free.

This is a non-linear problem because the strength_ cf the wing bound

vortices az,d free vortices, and the locations of the free vortex

elements are ur_czown. Thus, tile problem is solved by at. iterative

method.

oItlG11_A-t' £AG_ IS
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2.2 _,/cdel Oeometr_

The origin of the rectangular coordinate system is at the wing

'apex. 'The wing lies in the x-y plane and the x-axis is taken along the

wing cen_er-iine. The wing span is given by b and the surface area

by S.

2.2.! Wine Geometry_

The location of bound- ar.d trailing-vortex elements for a typical

case are showr, in figure 30, a detailed descriFticn of which is given

in section 2.3. The x-location of bound element.¢ iz given hy the

cosine law arid is illustrated in figure 1O.

C
x. : + :- _. _ Ccs(2i - 1 ,
l xi _ "- ' 2N v _, (2.1)

i = i,2,---N

where

the number of bound elements in a chcr<wise direction.

location of %railing elements is given by,

x_ is the leading-edge x-coordinate, c is the chord and N

The spsnwise

b 2j - 1
yj =_ (z - cos( zM' _))'

is

(2.2)

J = 1,2,---M
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where b is the span and M is the number of legs of trailing

vorticity, which is one higher than the number of spanwise strips of

bound elements. The locations of control points are given by,

x -- ÷ (l-0os( ll
cPk J 2

(2.3)

k = 0,1,2,---N

Ycpj = _ (1- COS(_)) ,
(2.4)

J = 1,2,---(M- i)

where x£.
J

Ycpj

2.2.2

and cj are the leading-edge x-coordinate and chord at

respectively.

Le.ading-Edge Vortex System Geometry

The leading-edge vortex system is superimposed on the regular

quasi-vortex-lattice grid. A typical vortex element is shown by

points A through J in figure ll. These points are comnected by a

series of short straight segments. The initial location of these

segments is shown by dashed lines and final location by solid lines.

These segments have the following characteristics:
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a. Points A through E lie along a wing trailing vortex element.

Initially point A is one root chord away from the trailing-

edge in the downstream dir.ection and the line segments

between A and D are parallel to the ax_s of s_mmetry. The

line segments between points A and B are of equal length.

In the final converged position these segments are aligned

in the directicn cf the local velocity vectcr. The segments

B-C and C-D are 0.i CR long. B-C is allowed to move only

in the vertical direction whereas C-D is fixed in the wing

plane because flow is tangential tc the trailing-edge.

Segment I>-k is also fixed in the wing plane.

b. Points E, F, G a_d H also lie in the wing plane. The location

of segment E-F is ahead of the wing first bound element and

is given by,

cE
xE = x£ + -- (i Cos wF 2 - (2'(N+ l) )) (2.5a)

cv _ )) (2.5b)
xF = x_F_ + -_-2(l - Cos(2( N + I)

where the subscripts E and F refer to the points under

consideration. _T_e above two equations are similar to

equation (2.1). It is to be noted that segment E-F is

located at the first bcund element for a grid of (N + i)

bound elements in a chordwise d_rection. The segments F-G

and G-H are of the same length and point G lies cn the
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C.

lee_ling-edge. The segment G-H is fixed in the wing plane

due to the leading-edge boundary cond2tion.

The initial location-of point I is given by,

x! : xF (2.6a)

Yz = Y_ (2.6_)

z I : O.1 CR tan(22.5 - 0.Sa) for _ _ 15 ° (2.60)

or zI : 0.i CE tan a for _ >_ 15 ° (2.6d)

d.

where CR is the root chord and a is the angle of attack.

Initially point J is one root chord away from the trailing-edge.

The segments between point I and J are of equal length and

lie in a plane parallel to x-z plane. These segments are

approximately at a height of 0.1 CR above the wing plane (see

Chapter 2.6). In the final converged position all the segr.ents

between points H and J are aligned in the direction of the

local velocity vector.

The semi-infinite segments from points A to infinity and J tc

infinity are straight and are parallel to the undisturbed

free-stream direction.
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2.3 Induced Velocity Due tc Wink

In the quasi-vortex-lattice method (ref. 31), for the purpose of

satisfying %_ing boundary (%angency) condition, the continuous vortex

distribution over the wing 's replaced by a quasi-continuous one,

being continuous chordwise but stepwise constant in the spanwise

direction. Thus, the wing surface ca_. be divided into a number cf

vortex strips with the asscciatel trailing vortices (fig. IC). in e.r.y

-@

strip• consider m vortex ele/nent 7dx with an arbitrary direction £

(fig. 12). The induced velocity due to all hound elements in ith

strip is given by (see Appendix A),

(2.7)

and due to the asscciated trailing vcrtices by (ref. 31)•

The transformation, x'

(2.7) and (2.8) to,

= x L

d.x' (2.8)

+ _ (l- cos e) reduces ecuatiens

_f = _z(o' y(e) sin e de

1

(2.9)

and

(2.1o)
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where,

_z(e)= _x_ _ b_, _ _, }. _,
J_'_ _'I_ I_'I I_'l

1

arid c(y) = x t - x£ a, _, etc. ar_ defined in the List vf S_'mL_.

The total induced velocity due to the ith strip of vortex distribution

is given by,

El(_)= S2c(Y)87InoEl(e)y(e)Sin e ae

87 o

_ _ '"_.2c_y)ITT_"(e) x(e) sin e de
8_ o -2

(2.11)

where the first term is due to bound elements, second due to left leg

of trailing elements and third due tc the right leg of trailimg elements.

The above integrals are reduced to finite sums through the midpoint

trapezoidal rule (see ref. 31):

÷ _lk _
qi(_')= B2 (y) N8N z ( + G' - _" )Ywsin ek (2.z2)

k=I 2k 2k

where ek (2k - i}= 2N w and locations of bound elements aye given by,
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Xl k x£ 1 Cl_k
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(2.13a)

x = + c2_ k
2k x£ 2

(2.13h)

= _ ,2k_k 12 [i - Cos --2N- w)], k : 1,2,---,N
1

(2.13c)

x£1 : the leading edge x-coordinste at Yl (le_t leg)

x£2 = the leading edge x-coordinate at Y2 (right leg)

cI = chord length at Yl

c2 = chord length at Y2

The control points in the chordw!se direction are chosen such that,

c iw
x i : x£ ÷ _ (i - Cos _--), i = 1,2,---N (2.1_)

where x£ is the leading edge x-coordinate on the chord c through the

control point. The span_ise location of trailing vortices is given by,

b i
y. = - (i - Cos( 2J - :)) j = __,2,---M
a _ 2:: '

(2.15)

and control points by,

: _ - COS{ i_'_b (i _ .T.V-)j i : i,2,---(r4-1)Yi _ (2.16)

where b is the span and M is the total number of trailing vortices

which is one more than span%_se strips. The geometry associated %_th
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equations (2.13) - (2.16) is based on the semi-circle method and is

illustrated in figure i0.

Thus, induced velocity due to 8.11 vortex strips of the wing can be

written as,

M-1
-+ -+ -+ -_

q(R) = z qi(R) (2.17)
i=l

2.4 Induced Ve!ocity Due to LeadinK-Edge Vortex System

The leading-edge vortex syEtem:, as described in Chapter 2.2.2,

consists of "M-I" elements. Each element may have different number of

small vortex segments. Assume that ith set has L small segments.

The induced velocity at a point (x,y,z) due to Jth segment of ith

element is given by (Appendix A),

=.___A {_' _ a' }
x I,I 2 l 'l l 'I

(2.18)

where

= xi + yJ + zk

a = (x_ - x)i + (yj - y + (z,_- z

I = (xj+ 1 - xj)_ + (Yj+I - YJ)_ + (ZJ+l - zj)[
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a' = (xj - x)i + S(Yj - Y) + 6(zj - z)[

b' = (xj+l - x + _(Yj+l - y)7 + 6(zj+l _ z)_

r. = Vortex strength cf ith set of segments
l

The subscripts J and J+l correspon_ to the end points of Jth

segment.

Now the induced velocity due to ith element can be %Titten as,

L

7. : z 7.
l j:l i.

(2.19)

Therefore, the induced velocity due tc all elements is,

M-1

1
i=l

(2.20)

2.5 Boundary Conditions

The two basic boundary conditions to be satisfied in the model are,

a. The flo_ must be tangential to the _ring camber surface.

b. The vortex elements above the wing and in the wek.e behind

the trailing-edge must be force free.

ORIGINAL PAGE IB
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2.5.1 Fqrmulation Of Wing Boundary Condition

The bound elements and the corresponding control points of the

wing surface are numbered from the leading-edge to the trailing-edge

and from the root to the tip. Thus, there are Na = N(M - !) bound

elements and corresponding control points (see Chapter 2.2.1).

Similarly, the vortex elements and the corresponding control points

in the leading-edge vortex system are numbered from the root to the

tip. There are _Fo = (M - i) leading-edge vortex elements being

equal to the number of wing vortex strips. Thus, there must be

Nc = Na + lib control points on the wing surface. The flow tangency

condition can be written as,

[Aij ] {Yj ] + [Bik] {Fk}

NcxNa Naxl NcxlCb Nbx.l

dz
- sin a

+ (_z) _ Sin a
a£k "dx k

Nc xl

Na

1-
Nb

(2.21)

where Aij i._ the induced downwash at ith control point of wing

due to a unit horseshoe vor_cex density at J ; Bik the induced

downwash at ith control point due to kth leading-edge vortex element

of unit strength; yj the vortex density of the Jth bound element;

Pk the strength cf kth leadi,_g-edge vortex element, the cmmber slope
i

at the ith control point and a the angle of attack. According to

equations (52) and (53) of ref. 31, the leading-edge thrust coefficient

is related to the normalwash on the leading edge by the folloving
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equati on!

(dz) + Sin aao = induced normalwash- d_k k
(2.22)

which leads to the last expression on the righ t hand side of equation

(2.21). In the above expression, a£ is defined as:

a_ =NJtan2A + _2 I 2ct'k COs'A 2 )1/2
(2.23)

N = Number of chordwime vortex elements

A = Leading-edge sweep angle

M = Free strea_a IK_h number

c = Sectional leading-edge thrust coefficient of the l_th strip
t k

For ccmp!ete leading-edge separation cases the sectional leading-edge

suction is zero and sc is aLk _

2,5.2 Formulation Of Force Free Condition Of Free Klenents

_ue vortex segments above the wing surface a_d zne w_:e are to be

aligned in the direction of local velocity vector calculated at their

mid-points. Consider lth segment of a vortex element. 7he

coordinates of its end 7'ci::ts are given hy (xi" Yi' z.z) and

(xi+l' Yi+l' zi+!)' Assume that the velocity at the mid-Feint of this

segr.ent at a given iterative ste_ is given by,
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Then, the new location of the (i + l)th end point will be,

where

and

U

X. = X. + AS

i+i N l

V

Yi+l N = Yi + _ As

(2.2_a)

(2.2&b)

÷ 'W

zi+iN = zi _ As (2.2hc)

U = Su 2 + v2 + w2

As = _(xi+ 1 - xi )2 + (Yi+l - Yi )2 + (zi+i - zi )2

Before equations (2.21) are used, the following points should be

considered:

a. The length of each segment is to be preserved.

b. The freo vortex segments above the wing sho'lld not come toc

close to the wing surface to avoid numerical difficulty

in the present inviscid theory.

c. The adjustment of the location of each segment to satisfy the

force free condition should be such that it does not result

in numerical fluctuations (see Chapter 2.6).
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Based on the above consideration, equations (2.2L) will be modified

as follows.

Consider the same ith segment. If this segment mcves a-percent

only according to the velocity computed at its mifl-point, then

equations (2.2h) can be modified to be,

L',..: a--TvAs + (i - a)_v
"., U .... - 7:, _.25a)_

AzN = a-_wASU + (! - a)(zi+ 1 - zi) (2.25b)

2
A_ =4As _ - Ay 2 - AzN (2.25c)

It follows that,

X. = X. + _j
_+i N l

(2.26a)

.vi+_. = Y i + flYN
(2.26b)

= Z. + °'l aZlJ (2.26c)

Let Zmi n be ti:e minimum vertical distance any vortex segment is

allowed tc come close to the wing surface. If

Zmi n, it is then set equal to Zmi n and AzN

z. is less than
i+l

N

is recalculated by using,

Az N = Z . - z._IXq i
(2.27)
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This value of Az N is used to calculate Xi+lN.

2.6 Solution Procedure

The basic unknowns of the problem are the bound vortex density

on the wing, and the strengths and the locations of the elements of

the leading-edge vortex system and the wake. The problem is non-

linear because the locations of the leading-edge vortex system and

_he wake are unknown a priori. Therefore, the problem will be solved

by the iterative process described below;

a. Prescribe the vortex lattice for the wing surface, and the

initial locations of the free elements over the wing and

in the wake.

b. By satisfying the wing boundary condition, i.e. equation

(2.21), obtain the bou_.d vortex density of the wing and the

strengths of free elements.

c. Calculate all the aerodynamic characteristics.

d. Calculate the forces acting on the free elements over the

wing surface.

e. Adjust the free elements of the leading-edge vortex system

m_d the wake in the local velccity vector direction, as

described in Chapter 2.5.2.

f. Repeat steps b through e until a converged solution is

obtained.

The initial locations of the free vortex elements are assumed b_

letting them leave the leading-edge in the undisturbed free-stream

direction up-to a height of about ten percent cf the root chord

ORIGINAL PAG] 
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beyond which the elements are parallel to the wing plane. Znitially,

all the elements of the wake lie in the plane of t_e wing. In the

iteration process, the fcrce free condition is satisfied on the free

elements from the root to the tip in the dovn-stream direction. A

similar approach has been used by Butler and Hancock (ref. 41) with

success for the wake problem. The elements over the wing are adjusted

before the elements of the wake. In the first iteration the segments

over the wing are moved 10C percent according to the velocity computed

at their mid-;oints. This movement is gradually reduced in steps of

90, 80 and 75 percent in the next three iteraticn_, after which it

remains at 75 percent Isee equations (2.25) and I2.26)). The segments

in the wake are moved only 50 percent in each iteration. Thus, exact

force free condition is not enforced because _henever %he free elements

come close to each other they induce unreasonably large velocities

because viscou_ effects are not included in the present theory. These

large velocities increase the forces cn the elements and induce

fluctuations in their locations.

The solution is assuaged _o have converged if in two consecutive

iterations the difference between the total strengths of leading-edge

free vortex elements _s less than one percent a2.a the absolute force

acting on the free elements is in the neighborhocd of a minimum. Thus,

an exact force free condition is not enforced as discussed in the

3revious paragraph.
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2.7 Aerodynamic Characteristics

The expressions for the evaluation of the pressure distribution

are derived in Appendix B. They are obtained by applying the Kutta-

Joukowski thecrem to the vortex system on the wing.

The sectional normal force coefficient of Jth strip is given by

chordwise integration of the differential pressure coefficient:

1 tj
c = m f AC

nj cj x£. p
J

(2.28)

where x and x are the leading and trailing edge x-coordinates

_j tj

of the chord passing through the control points of the Jtb strip and

cj is the chord length. The transformation,

:, : + ._L (1 - cos e)
x_,j 2

(2.2£)

reduces equation (2.28) to:

= _ Iz AC Sin e de
Cnj T o p

N+I
IT

= 2(N + i) _ AC Sin ek (2.30)
k-i Pk

&lad

(2k - l)
Ok : 2(['; + I) 'n, k : 1,2,u-(N+l)
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where the midpoint trapezoidal rule has-been used to reduce the

integral to a finite sum. Similarly, the sectional pitching moment

coefficient for the Jth strip about the y-axis iE given by,

xt

c - i f J AC xdx

mj cj_ xgj p

_+i (x_j cj cos
Z AC + (_ - 8k))Sin 8k

2_(N + i) k=l Pk 2 "

(2.31)

where _ is the mean geometric chord.

According to equations (52) and (53) of ref. 31, the sectional

leading edge thrust coefficient is given by:

ct =
4

(dz_ ]2w I -M 2 Cos2A (w'. - ( -- - Sin a)
j 'dx_j ,

2N 2 Cos A(i - _ + tan2A)
GO

(2.32)

where M is the free stre_: Mach number, A the sweep angle of the

Idz_
!eading-e_e, and w__ and _-j are the induced normalwash and slcpe

J

of the wing surface at the leading-edge.

The normal force coefficient is obtained ty integrating the

sectiona/ ncrmal force coefficient across the span:

where b

b

CN = b

2

c c dy (2.33)
n

is the span and S the wing area. By the transformation,
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b

y = _ (i - cos _) (2.3_)

equation (B.21) can be reduced to,

b f_= -- c c Sin qbdeCN 2S o n

M-i
bw

z_ Z C C Sin Q_2SM n. i
i=l l

(_.35)

i

+i = _ _' i = i,2,---(_.-I)

where (M-!) is the total number of spanwise striFs and the regular

trapezoidal rule has been used.

Similarly the pitching moment and leading-edge the%st coefficients

are given by;
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bw

CM = _ I Cm.C i Sin ¢i
i=l l

14-1

b_ _ ctic i Sin _iCT = _"_" i 1

(2.36)

(2.3")

The normal force coefficient and leading-edge thrust coefficient

can be resolved in the free stream direction and perpendicular to it

as sho_m in figure 13 to obtain the lift coefficient and the induced

drag coefficient:
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CL : CN Cos c (2.38a)
a

CD = CN Sin _ (2.38b)
a

CL = CT Sin c (2.38c
a

CDb = CT Ccs c ',_.3cd

where a is the angle of attack. Zquations (2.3@,) can now be used to

obtain the total lift and induced drag coefficients:

C._ = CI_ Cos a + C__ Sin e 2.39

CD. = CN Sin a - C_. Cos a
1

2._0

_T.en the flow along the feeding-edge is completely separated, the

ieadiz_-edge thrust coefficient is zerc.
J



3. !Re.sult s andDiscus sion

It has been found during the investigation that the calculated

induced velocities due to the wing become inaccurate if the control

point of a free vortex segment, where induced velocities are to be

evaluated, is any closer to the ving than twenty percent of the local

chord. On the other hand, the induced velocities calculated above the

control points of the wing show a smooth trend. Therefore, if a free

vortex segment is closer than twenty percent of the local chord, the

induced velocities at its control point, i.e. mid point due to the

wing, are obtained by linear inter;_lation of the velocities calculated

above four _-ing control points among which the point is located.

It has also been found numerically that the aered_,T._-ic

characteristics depended on the number of spar,wise strips, i.e. _! cf

equation (2.2). Therefore, a parametric study has been made t 0 find

a relation between the aspect ratio and the number of spanwise strips

for reasonably accurate results (Fig. lh). It is to be noted that

as the aspect ratio is decreased, the number of spanwise strips has

to be increased. This is due to the fact that the spanwise variation

of aerodynamic characteristics, such as pressure coefficient and thrust

coefficient, is large for small aspect ratio %clngs. This study was

performed by matching the lift coefficient_ obta/ned by using the

present method to those obtained by uzing suction analogy (ref. 32)

at one angle of attack.

29
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The free elements of the leading-edge vortex system have been

restricted not to come any closer than a minimum specified height to

the wing surface, which is given empirically by,

Zmi n = 0.i CR tan(22.5 - 0.5a) for _ < 15 ° (2._la)

Zmi n = O.l CR tan a for G _ 15 ° (2.alb)

where CR is the root chord and a the angle of attack. This

restriction was needed because whenever the free elements are close to

the wing surface, they induce large velocities on the wing and vice

versa, which ma_es the free elements fluctuate (unstable). In the

real flow, at small angles of attack, the leading-edge vortex system

is weak and diffused. The present method does not account for

diffused vortices and so the effect of the free vortices is artifically

reduced by increasing Zmi n as the angle of attack is decreased below

15 degrees.

All the resu/ts have been calculated by using six chordwise

vortex elements on the wing; i.e., N of equation (2.1) is 6, and the

length of the free vortex segments being 15 percent of the root chord.

The effect of the number of chordwise vortex elements and the length

of the free vortex segments is insignificant.

A computer program has been developed for the present model with

the above restrictions (ref. 42). It has been used to generate

aerodynamic characteristics for flat delta wings of several aspect
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ratios. These predicted results are compared _rlth the available

experimental data and the results by the suction analo£D" (ref. 32),

Kandil's model (ref. 23) and Brune's model (ref. 30) as obtained by

Kuhlman (ref. 33). The lift- and pitching moment-coefficients are

plotted against angle of attack for complete leading-edge separaticn

cases, i.e. zerc leading-edge thrust, in figures 15 through !9. In

general the agreement for thc lift coefficient between the 7rc_-e_.t

method, suction analogy (ref. 32), Brune's model (ref. 30) and

experimental data is quite good. The present method usually over-

predicts the lift coefficient at small angles of attack _hereas

Brune's model (ref. 30) underpredicts it. For the wing of aspect

ratio 0.7053, the present method becomes less accurate at high angles

of attack (figure 15). T_is could be due to the large rate of change of

pressure coefficients in span%-ise directions at large angles of altack

for small aspect ratio wings. A better agreement could be obtained

by increasing the number of span_'ise strips for small aspect ratio

wings at large angles of attack. _m excellent agreement is seen for

the pitching moment coefficientE calculated by using the present

methcd and the experimental data in figures 16 and 17. The suction

analogy can not predict accurate pitching moment coefficient because

-it aces not calculate the surface load distribution. Although

surface load distribution is predicted in Brune's model (ref. 30),

the pitching moment coefficients are not predicted accurately. The

pitching moment coefficients predicted by Kandil's model (ref. 25) for

aspect ratio 2.0 wing are in a better agr_uJ_cnc with experimental data
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than any other method, but the model is restricted up to a 20 degree

angle of attack only. The effect of Mach number on the lift- and

pitching moment coefficients at different angles of attack for aspect

ratio 1.5 wing is shown in figure 20 and the trend for the lift

coefficient agrees with that predicted by the suction analogy.

The pressure distribution for three delta wings at several angles

of a_tack and constant x-locations are shown in figures 21 through 23.

In genera/ the pressure peak obtained by usiag the present method is

lower than the experiments/ value and is shifted towards the root

chord. Figure 22 shows the on/y comparison with the theoretical method

of Brune (ref. 33) and a sharp peak is visible in Drune's tunas!.

The reason for the peak being lower in the present model is that each

free vortex acts as a concentrated core by itself whereas Brune's

model has a separated vortex sheet %'ith a concentrated core at its end.

Therefore, in Brune's model a sharp pressure peak. _ill be present,

whereas in the present model the pressure distribution will be more

diff_ised.

Thus far it has been shown tha_ the present model gives reasonable

results for completely separated flow along the leading-edge. The

theoretical effect cf partial leading-edge separation on the aero-

dyna_.ic characteristics will be sho_n next. Figure 2_ shows the

effect of varying the amount of the leading-edge suction lost on the

aerodynamic characteristics for delta wing of aspect ratio 2. It can

be seen from the figures that for a fixed angle of attack, the lift

coefficient and the induced drag increases as the azount of the



33

leading-edge suction lost increases. These trends are similar to the

ones shown by Henderson (ref. i). For these cases the lift is found to

be highly nonlinear with angle of attack. On the other hand, a definite

trend in the variation of pitching moment coefficient is not seen.

At present, the theoretical prediction of the phenomena of partial

leading-edge vortex separation is not possible. The extent of the

separation has been known to depend on the leading-edge geometry, the

Reynolds number and the wing sweep angle (ref. i). When the degree of

partial separation can be predicted, the present method can be used to

calculate the corresponding aerodynamic characteristics.



4. Conclusions and Recommendations

A theoretica/ method has been developed for predicting the

aerodynamic characteristics of low aspect-ratio wings with partial

leading-edge separaticn. The present method has been shown tc work

satisfactorily for cases with complete leading-edge vertex separation,

where the leading-edge suction is zero. Some preliminary theoretical resul[s for

cases _-ith _arti'__l leading-edge vortex separation agpear tc be

reasonable. The method hac an advantage over all previous vortex

lattice methods in that the leading-edge boundary ccndJtion car. be

exactly satisfied. It is not restricted to incompressible flcw. At

the present time it is restricted to Flanforms with pcinted wing tips

only. The present method can be extended to handle arbitrary planforms

at high angles of attack, as long as the vortex bursting does not

occur.

The recon_zended topics of further research on this method are:

a. Extend the method to include the ving-ti; vortices.

b. Search for a better iteration scheme for faster convergence

and lock for a better convergence criteria.

c. Modify the method for th/ck wings.

d. The method can easily be extended to complex pianforms in

which the inboard portion has separated flow and the

outboard has attached flow.

e. The method shouldbe checked for some mere cases with partial

leading-edge separation.
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f. The computer program coding should be made more

efficient.

O_ _OU_
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Appendices

Appendix A: Evaluation of Induced Velocity Due to a Line Vortex-

Segment

In the linearized compressible flow the velocity field induced by

a line vortex segment of strength F (figure 12) is given by (ref. 31 ,

where

f-

B = w - _ ' = xi + yj + zk

R£ : [i + _j + _k

R' = xi + _yj + _zk

R[ = [i + Snj + S[k

i/2
= [([_x)2 + _2(0_y)2 + _2(c_z)2!

The substitution R£ - R = a + x£, reduces equation (A.I) to,

42



h3

1 dTa_:
o (_T2 + g_ ÷ #)3/2

62r * _ 2
=_ ax {(y2 ' "- 4_ _)_:L/2

_ 2(2 A + B) )1/2 ) _2 _ 4AC _ 0(_2 _ _)(_ + _ + _

2 _ 2.,h_=_ z = Iz'l m= 2a' • _' and C = la'l Further, it can be

shown that (ref. 3i),

(A.2)

_2 _ t,_ = -_1_' _(t' 12 (A.3)

2_, + £, = 2 b' " (A._)

(A.5)

where

-_ -4,

= (xz -_)T + (Yl-Y)J + (zz- _)_

"_ -- (x2 - Xl)_" + (Y2 - Yl )_" + (z2 - Zl)k"

_' = (xz-x)'_+ S(yz- y);+ 6(h- _)[
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b' = (x2 - x)'_+ _(Y2- y)_ + _(z2- z)k

£, = (x2 - Xl)_ + B(y 2 - yi)J + 6(z 2 Zl)k

On rearranging, equation (A.2) becomes

__{______ _' } ][, (A.6)



6.2 Appendix B: Derivation_of Expressions for Pressure Distribution

Consider two adjoining sets of spanwise strips of bound elements

(Sketch B.I). Along the common edge, there are three trailing

vortices: one due to right set of bound elements, one due to the

left set of bound elements and the o_her due to the leading-edge vortex

system. The force acting on the chordwise element of length Ax of

the leading-edge vortex system is, by the Kutta-Joukowski theorem,

FL. = pV£Pjvi_x (B.I)
i

_ Y

ith Bound

element

Leading-edge vortex

elemen%Leading-edge

h

jth
strip strip

X

Sketch B.I

01_.IGI_ Aju pAG_ _

poor QUm/ 

_5
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where p is the flu/d density, V the free stream velocity, rj

the strength of Jth leading-edge vortex element _nd vi the sidewash

at point i. !t follows that the force acting at ith point per unit

dynamic pressure and length is,

FL_ = 2fjv i (B.2)

I 2
where q = _ DV , the d_mamic pressure. A similar expression for the

force per unit dynamic pressure and length can be written for the

outside leg of the jth strip as,

{ FN i_ x.= -2v. / 7 ix- (B. _-

vo. _ex density x£ the leading-edgewhere y is the bound _+

x-coordinate of the trailing-leg under consideration. The

Lr _n sformat ion,

C °

+ -_ (i - Cos _)
x=x£ 2

(B._

reduces equation (B.3) to the form,

FN i._ O.
-- =_ v.cj / I\qAx/R _ o y sin 0 aO

c v. [i I y: Sin 81
- _ _ Yk Sin _k + "

.. N L_k=l 2 R

(B.5
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where cj is the local chord, N the number of bound elements in

chordwise direction and ek (2k - i)= 2N w. The integral has been

reduced to a finite sum through the regular trapezoidal rule.

Similarly, for the left leg of (j+l)th strip,

qAx/L N [k=l 7k Sin ek
7i Sin 8i!+ 2 (B.6)

Therefore, the force per unit dynamic pressure and per unit length at

the ith point is given by the sum of equations (B.2), (B.5) and (B.6).

\qAxl R
(B.7)

Equation (B.7) is evaluated at all endpoints of _ing bound

elements and linear interpolation is performed to obtain the force

acting at the control station which is inside the vortex strip. Let

for ith bound element of Jth strip. Then
it be denoted by Hj, i

the contribution to differential pressure coefficient, AC , due to the
P

chordwise vo_rtices is,

ACpj, i T Ayj

(B.8)

where Ay_ is the width of Jth spanwise strip.

Contribution to AC due to bound elements is calculated in the
P

following manner. _"_nenormal force per unit length acting at ith



28

bound element of Jth strip (Sketch B.2) is,

or

FBj, i

AY i

= pV_ (uiY i Cos _i - viYi Sin _i ) Cos _i

FB = 2q(u. - v. tan $i)TiAYj (B.9)
j,i l 1

where ¥i is the bound vortex density, u i and v. the x aria yi

components of the velocity, _i the sweep angle of the bound elements

and Ayj the width of the Jth strip. It follows that the ACp due

to the ith bound element is given by dividing equation (B.9) by

qAyj);

The total AC
P

= 2_u_ - v tan _i '_
PJ ' B _ ! JYi

is given as the sum equations (B.8) and (B.iO):

(B.IO

= IAC + ACpj

ACpj,i _ _J' T ' B

(B.il

Up to this point AC has been calculated at the regular wing
P

vortex locations. The contribution from the leading-edge vortex

element on the pianform near the leading-edge (EF in figure ii) has

yet to be considered. This is done in two steps; i. Extrapolate AC
P

due to the wing vortex system to obtain the AC at the location of
P

the leading-edge vortex elemen_ hF; _d 2. Subtract LC induced cy
P

the leading-edge vortex element.
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f Y

y Cos

_ .. I "f Sin _

;ound element

x

Sketch B.2

To obtain AC at any chordwise location, AC sin e ___i be
P P

Fourier-analyzed. The factor, Sin 8, is included to eliminate the

known square root singularity of AC at the leading and trailing
P

edges. Therefore, let

AC Sin 8 = a
p o

N

+ Z a_ Cos £8
=i

(B.12)

where,

i ina =- AC Sin 8 d@
o _ o p

N
~ i
= -- Z AC Sin 8k

N k=l Pk
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2 f AC Sin @Cos £@d@
a£=_ o p

N
2 Z

AC Sin @k Ccs £@k
N k=l Pk

@k (2k- 1).z k = 1,2, ...... I;= " 2N

N - Number of chordwise lines

The integrals for Fourier coefficients are reduced to finite sums

through the mid-point trapezoidal rule. Equation (B.12) can now be

used to calculate AC at the location of the leading-edge vortex
P

clement EF, which is located at @ = _/2(N + I). To achiev_-the

second step mentioned above, the constan% vortici%y of the leading-

edge vor%ex element is first converted tc vo_ex density. The

concentrated vorticity is related to vortex density by,

F = / _ ax (B.13)

On using equation (B.h) in the above e_uation,

C .

F = _ f "f Sin @ d@ (B.14)
j 2

Assuming that the concentrated vorticity due to leading-edge vortex

system is distributed near the leading-edge cniy and using the mid-point

trapezoidal rule, the equation (B.14) reduces to:



51

or

_cj
rj = 2<i_+ i) _j Sin eI

2(._÷ i) rj (B.15)
YJ = w cj Sin eI

where 81 = 7/2 (N + I). Therefore, the decrease in ACp value at the

leading-edge vortex element is_ given by using equation (B.10) as,

(ACp) = - (u - v tan _)£e Yj (B.16)
decrease

where the subscript ie means that the variables u, v and _ are

evaluated at the leading-edge vortex elem_ent. Note that this decrease

in AC value near the leading-edge from the usual AC distribution
p P

is a result of the leading-edge Kutta condition. Hence, the equations

(B.12) and (B.IL) can be used to calculate the actual ACp at the

location of the leading-edge vortex elements.
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Figure 5. Gersten's model
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